报告题目:Designer Nucleic Acid Architectures for Programmable Self-assembly
报 告 人:Hao Yan
报告时间:2019年7月28日上午10:30
报告地点:南一楼中311室
邀 请 人:潘林强
报告人简介:
Hao Yan,Milton D. Glick Distinguished Professor in Chemistry and Biochemistry and Director of the Center for Molecular Design and Biomimetics in the Biodesign Institute at Arizona State University. The theme of his research is to use nature’s design rules as inspiration to advance biomedical, energy-related, and other technological innovations through the use of self-assembling molecules and materials. He aims to create intelligent materials with better component controls at the molecular level. He is leading an interdisciplinary team to design bio-inspired molecular building blocks and program their higher order assembly into systems that will perform complex functions. Dr. Yan has published more than 180 papers, including more than 30 papers published in journals such as Nature, Science and Nature Sister Journals. He has received honors including the Rozenberg Tulip Award in DNA Computing, Alfred P. Sloan Research Fellowship, NSF Career Award, AFOSR Young Investigator Award. He has served as president of the International Society for Nanoscale Science, Computation and Engineering.
报告摘要:
DNA and RNA has emerged as an exceptional molecular building block for nano-construction due to its predictable conformation and programmable intra- and inter-molecular base pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nano-robotics, disease diagnosis, and drug delivery. In this talk I will discuss some of our work in the field of structural nucleic acid nanotechnology, and presents some of the challenges and opportunities that exist in DNA and RNA based molecular design and programming.